
AD AOb8 217 STANFORD UNIV CALIF DEPT OF OPERATIONS RESEARCH F#G 12/1
AN INFINITELY RETROGRESSING CONVERGING PATH IN F (—1)(O) DERIVED——ETCCU)
MAR 79 P S BROOKS 0AA629—78 6—0026

UNCLASS IFIED ARO—1525’e.5— M ML

I~~~I
ADA

82 17 ____________________ _______________________________________________________________________



1•0 ~ 2 8  
~~~~

__________ iso 1315 ~ 2 2
•~~ ll~~~L 3.5

I •l L L  2 01• 1 ~~~~ ==

__  

~~~~* hip25 IL~1L~~•
NATIONAL BUREAU OF STAN~ IRO$

~ caoGo.Y *ESOLUTlO$~ TEST C14*T



‘-4

>-
0-

C-,



~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AN INFINITELY RETROGRESSING CONVERG iNG PATH IN ~ ~(O)
,~~

DERIVED FROM A C” FUNCTION AND THE J~ TRIANGULATION
1 ’ —
-

by

Peter S./Brooks /
‘

I
/
~~~

( / /  
TECHNICAL REPORT .

— 2 ~-‘

March 10, 1979

~ JO 
~ \ ~~:, •

/‘ / -

~~ 

- )
Depar tment of Operations Research

Stanford University

Stanford, California

This research was sponsored in part by the Army Research Office —
Durham, Contract No. DAAG—29— 78—G—0026 and the National Science
Foundation, Grant No. MCS—77—05623. Principal Investigator, B.
Curtis Eaves.

C~ 
‘~~

L)/ 
~‘ 7  ( ( 

_ _ _  - _ _ _ _ _ _ _

______________________________ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _  A



r — - _ _  - - — - — -. .. — -——— — ————

ABSTRACT

For certain functions F : R
n 

X (0,1] + R~, the Eaves—Saigal

algorithm computes a path p — (p1,p2) : (0, + .) -‘ F~~(0) 
(1 x (0,1],

such that (p
1
(s),p2(a)) +(z,O) as s + + ~ . It is shown that even

when F( , 0) is of class C and has a unique zero, p2(s) may not

decrease monotonicaliy to 0 on 
~~~~~~~ 

+ “) for any
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• AN INFINITELY RETROGRESSING CONVERGING PATE IN F 1 (0)
DERIVED FROM A C~ FUNCTION AND THE J

3 
TRIANGULAT ION

Peter S. Brooks
Mathematics Department
Stanford University

Introduction

Triangulate It” x (0,1] with Todd’s J
3 

triangulation, the

vertices of which are denoted by (Todd [10]). Elements of

Rn x [0,1] are written as (z,t) . Given a map f : + 1Lt~ ~~

define a labeling F : J° + lit” by F((z ,t)) — f(z) . Extend F

barycentrically on each simplex of the triangulation; call this new

n n
map F also. If f : JR + JR is continuous, F may be extended from

IRn ~ (0,11 to x [0,1] in a natural manner by def ining

P(z ,O) — liin F(z,t). We now observe that f(z) — F(z,O). The Eaves—

Saigal algorithm produces a piecewise linear 1—manifold which can be

parametrized by p — (p1,p2) : (0, 
+ a’) + x (0,11 . This path is

one path componen t of F~~ (0) ~ lit” x (0,13 (Eaves and Saigal (6],

Kojima (7]) .

If p
1
(a) stays within some bounded region in lit” , then for

each t < 1, p2(s) eventually stays out of (t,1], implying that

p 2(s) 
-
~ 0 as s -~ + (Eaves (4]). We say the path retrogresses on

(sç i” ~ ~~
‘ < “ , If  p

2~~~ 
is strictly increasing on (s’ ,s” 1, and

if p
2
(s) fails to be strictly increasing on — ~~, s” + £3 for

any c ‘ 0 . If p2( s )  — t’ , we say the path retrogresses at t’

See Figure 1. We say the path is infinitely retrogressing if there is

- 

1 
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a sequence {~m} utonotonically decreasing to 0 such that the path

retrogresses at each ~m We say the path converges if

-
~~ 

(z ,0) as s + + a’ for some z in litt1 .

Under what conditions might an infinitely retrogressing path

occur? If the triangulated space is lR~ x (0,1], then tht algorithm

is just the bisection algorithm (Eaves [4]). The bisection algorithm

cannot yield any retrogressions at all.

If p1(s) is bounded in ]R” , then the cluster points of p
1

(s)

form a non—empty closed connected set (Eaves [4]). Given that

f : ]R” -‘ Ia” is of class C’, and that z is a cluster point of

p
1

(s) , ICoj ima proves that a non—vanishing Jacobian of f at implies

that the path cannot be infinitely retrogressing (Kojima [7]).

In this paper I shall show that infinitely retrogressing paths

do occur. I shall construct a function f lit2 -. JR2 
satisfying

(i) f is of class Ca’, (ii) f has a unique zero at some in

lit2 , (iii) F ’1 (O) fl ]R~~x (0,1] has an infinitely retrogressing converg—

ing path component.

Requirements for the Labeling

An n—simplex is the closed convex hull of n + 1 affinely in-

dependent points, called vertices. A j—dimensional face is the closed

convex hull of any j + 1 of these vertices. An (n—l)—dimensional

face is called a facet. Two facets of a triangulation are called ad-

jacent if they intersect in an (n—2)—dimensional face. Note that any

two facets of a given n—simplex are adjacent. In the following, we are

• 
• using Todd’ s J

3 triangulation of (0 ,1] . The simplices, in



this case, are 3—simplices.

The first step in the construction of £ is a “loose” speci-

fication of the value of f at certain points. Formally , given a

set T in it
2 , and a point z in 11(2 , we say z is prelabeled

by T if f(z) will be required to lie in T • If (z,t) is a

vertex of the triangulation, and z is prelabeled by T, we also say

• (z t) is prelabeled by T

Let

X {(x ,y) E 11(2 : x 0 , y > O}

• Y a’ {(x,y) ER
2 : x 0, y > 01

W {(x ,y) e iit2 : x 0, y < 01

These sets are used to prelabel a specific sequence (z~}_1 . Figures

8—12 indicate the prelabeling of portion i of this sequence, namely

• z9~~1, ... , z9(j+,)+4(i 
— 0,1,2,...) . An K , Y, or W is placed

beside each (z
fl
,tk
) according to whether (z

fl
,tk

) is prelabeled by

X, Y, or W respectively. Each facet whose vertices are prelabeled

by X, Y, and V is called completely prelabeled.

For a given map f : ~~ It2 , a facet t is called completely

f—labeled if F(r) is a 2—simplex whose interior contains the origin.

The key observation is that by the choice of the sets X, Y, and W ,

the completely prelabeled facets will become completely f—labeled once

we hay, defined f on all of iit2 , subject to the prelabel. requirements.

The idea underlying this approach is as follows : The simplex a~1
in Figure 4 has exactly two completely prelabeled facets , r 3 and
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No matter what values we assign to f at the z , subject to the

• prelab.1. requirements, there is exactly one point a.1 in the interior

of r~ such that F(a~ ) — 0, (i — 1,2) . Since F is linear on

the chord between and 02 is the preimage P 1(0) in a
~ 

. If

02 is the unique simplex which shares with 01, and if the re-

maining vertex of 02 is prelabeled by X , Y , or W , then there are

exactly two completely prelabeled facets, 
~2 

and t 31 of a
~ 

. As

before, there is exactly one point 03 in the interior of t
3 

such

that the chord between 0
2 and 0

3 
is the preimage P

1(0) in 0
2

By a careful choice of prelabels for certain vertices, we form

a sequence of completely prelabeled facets as indicated in Figures 8—12.

This choice of prelabeling will result in a portion of F~~ (0) which

retrogresses once. We call this portion cycle i . Our construction

enables us to piece together such portions, resulting in a path which

retrogresses infinitely many times. We now describe this construction

iü detail.

The infini tely retrogressing path will begin at

p(O) — (p
1(0), p2

(O)) ,  with p
1
(0) in the interior of the square

{(x,y) e it2 : 0 c x c 
~~, 0 .c y c 1), and p

2
(O) — 1 . Cycle I is one

cycle of th. repeating pattern of the path. It is shown in detail in

• Figures 8—12. Figure 2 gives a schematic diagram of cycle I

• Figure 3 indicates that portion of (0,1] used in the construction

of cycle i • The successive stages of cycle I occur as follows:

1. The cycle begins at t 31(t~ — 2 i) The path passes down

through block B( i,l) . Figure 8.

bt~111~~_
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2. The path dips down into block B(i , 2) and returns to

It has retrogressed at t
1 

. Figure 9.

3. The path dips up into block 8(1,1) and returns to

t
3~ 4.1 . Figure 10.

4. The path passes down through block B(i,3) . Figure 11.

5. The path passes down through block B(i,4) • At this point ,

we are at t3(i+l)~ 
ready to begin cycle I + I • Figure 12.

The cycles are indexed by i — 0, 1, 2 Cycle i + 1 has

the properties that

1. the projection of B(i+l ,l.) into ]R2 x (1) is contained in

the interior of the projection of B(i ,l) into ]R2 x (1) ,

and

2. the Y and W prelabels are interchanged in their positions

relative to the X prelabels.

The next sections deal with the construction of a function

f : It2 -. ~~ which satisfies the prelabel requirements on

This function will automatically yield an infinitely retrogressing path

which passes through an infinite sequence of distinct completely f—labeled

face ts (tI . The path intersects each t at a unique point in the

interior of Tm Consecutive T
m are adjacent. This implies that the

path is one path component of F 1 (0) fl 1R~ x (0,1]

Preliminary constructions

Let

• K’ — {z~ : z~ has prelabel xl

• 1’ — (z~ : z has prelabel Y}

— (z : z has prelabel W}
“ “

5
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Note that (z~}~~1 — K’ U Y’ U W’ and this union is disjoint. Since

is contained in the union of a properly nested sequence of bounded

closed sets whose diameters go to 0 (namely the projections of

B(i,1), I > 0, into II~ x (11), there is a limit point z
0 

of

This implies that the pa th converges to (z0, 0)

Claim 1: There is a line L in lit2 through z
0 

such that the per-

pendicular projections of (z}
0 onto L are all distinct.

Proof: ( z } 0 is countable. The number of distinct slopes of line

segments through pairs {zj~
zj
}j#j is at most countable. Choose a

number m which is not the negative reciprocal of any of these slopes.

Let L be the line through a
0 with slope m . I/I

Let L’ be the line in lit2 perpendicular to L at z
0 

. Let L, L’

be a second pair of coordinate axes of lit2 , with the same scale as

the original axes. Let it :]R2-P JR1 be the perpendicular projection

map of JR2 onto L, viewing L as a copy of 1R~ . Let ~~ ir(z~)

Note — ir(z0) 
— 0

A map g : ]R~ -. ]R~ is of class C° if g is continuous. If

all partial derivatives of order < r exist and are continuous, then

r rg is of class C • If g is of class C for all r, 1 < r < a’,

then g is of class Ca’ . A map g : lR~ + ~ m given by

g(z) — (g
1(z), ..., Sm(z)) is of class Cit if each g

~ 
: -. it’

is of class Cr, 0 < r < a’ (Spivak [9]).

6
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Since ii is a linear map on Ia
2
, it is of class C

a’ 
- By the

continuity of it , (ii 
~~~ 

has the limit point ir~ . Since the

it , n > 1, are isolated, we can construct intervals I — (ii — €/ 2 ,

it + c /2), where 0 < c < 1 is chosen so that the closures of then n n

• I
n 

are pairwise disjoint and don’t contain ir~ . For any set A, we

denote the closure of A by A

Let 4 : It1 -i (0 ,1) be a function of class Ca’ satisfying

1. 4 1 on [—1/6 , 1/6]

2. $ > 0 on (—1/2 , 1/2)

3. 4 0 outside [—1/2, 1/2]

Note that the support of 4,  denoted by supp (~), satisfies

supp($) {x : 4(x) # 0} — (—1/2 , 1/2]

-l/x
One such 4 can be constructed as follows: Let f(x) — e , x > 0,

and f (x) 0 for x < 0 ; f is of class Ca’, and f(x) > 0 for x > 0

Let g(x) — f ( x )/ ( f ( x )  + f( 1—x) ) . Then g is of class Ca’ and

satisfies g(x) — 0 for x < 0 , g’ (x) > 0 for 0 < x < 1, and

g(x) — 1 for x > 1 . Finally, let 4(x) — g(3x + 3/2) g(—3x + 3/2)

Then $ is of class Ca’ and satisfies 4(x) 0 for ~~ > 1/2,

•(x) 0 for lx i c 1/2, and 4 (x) — 1 for lx i  < 1/6 (Munkres [8]).

See Figure 5.

Given an interval J — (a,b), — a’ < a < b < a’, let 4(J) denote

the 4 function scaled and translated so that supp ($(J)) — 
37
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Explicitly ,

= $(? 1(2x—a—b)/(b—a))

In particular , we have

— $(( x— 1r )/ c )

Note that

• (1 i) (,~) = (l/c )~ ~~~~~~~~~~~~~~

where (j) denotes the j—th derivative with respect to x . The

0—th derivative is the function itself.

For any function k : ]R1-~ lit
1
, let ilk” — sup((k(x)I : x e JR

1 }

If k is continuous, we can also write ilkil sup{Jk(x)J : x e supp(k))

Claim 2: 1 4
(j~~ < ~4

(j+1)~ j — 0, 1, 2,

Proof: Note that supp (4°) supp(4) — (—1/2 ,1/21, and that

C supp(4) for all j . By the Fundamental Theorem of

calculus,

(j) 
= 

X 

~~~~~~~~ dt
—1/2

< j
X 

I$~~’~(t) Idt .
~~ i4

(j+l)
~

—1/2

Taking the supremum of f $~~(x) I over X E  supp(4) gives

< ~4
(j+1)0 /11

8



Lemma: Let k : JR1-. JR1 be continuous everywhere, and differentiable for

all x ~ 0 . ‘f lim kW (x) 0, then k is differentiable at x = 0, ‘and
x~O

k~~~(x) — 0

Proof: For any x ~ 0, apply the mean value theorem to get

(k(x) — k ( O ) ) /x  — kW(c) for some c between 0 and x . Thus,

(k(x) — k (O)) / x  = 
~~~~~~ k~

1
~(c) — 0 . But this is exactly kW (O). 1/I

Our desired function f : ]R~ + JR 2 will be given by f(z) (f
1

(z) , f2(z)),

where f 1 : JR2 
+ JR1 is of class Ca’, i — 1, 2

Construction of

1 1I shall construct a function g
1 
: JR -. JR of class C • Define

by f1(z) g1(ir(z)). Note that compositions of functions of class Ca’ are

of class C . Define

S : fz) 1 
-. {—l ,0,+l} by

+1 if a cx’n

s S(z ) 0 if an a n

—l if a cY’
n

Let n — . Choose 
~ 

> 0 so that

< 2—n ~



Note that

— 0 (1/s )i II 4(i)11 < a (1/~.)9~~
’
~
’il

— < 2 n for j < a

Define g
1 : 

]1(1~ ]1(1 by

g1~~~ 
n~l 

S 0 4 (x)

Since the supports of the 4 do not overlap , this sum is well—defined. Note

that g
1
(0) = 0, and g1

(x) = 0 f or all x 
~ n~1

In . Thus

< !lc1~ $ 11 < ~~ for x ~ supp (4 )

Since the intervals I tend to the origin in ]1(1 , we have that g
1 

is

of class C • See Figure 6.

Claim 3: g
1 is of class Ca’

Proof: For x ~ 0, g~~~ (x) = 
~ 

s a $
W (x) . So ~g~~~(x) J .~~. 

Ict
1~ ~~~~

n l

< 2~~~ for x~~~ supp(4~ ) . As above , g~~~(x) I -‘ 0 as x + 0

By the lemma , g~~~ (0) exists and equals 0 . Thus, g
1 is of class C

1

Inductively , assume g
1 

is of class Cit 
. As above , 8

(r+l)(X)( + 0 as

x -
~~ 0 . The lemma implies that g

1 
is of class Cr+l - Thus, g

1 
is of

class C . I,,

10
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Construction of f2

Recall that the objective is to create a function of class C°’

with a unique zero at z0 
. I shall construct f2 

in two stages .

First, I shall define a function g2 
: lit1-.. JR1 of class Ca’ satis-

fying

l. g
2
(~~z~)) < 0 for Z~ E

2. g
2
(ir(z~)) > 0 for Z

n 
E X’U y’

~ < 0 whenever g
1
(ir(z)) 0, z ~

Then I shall define a function h 1R2+ JR1 of class Ca’ satisfying

1. h(z) 0, n > O

2. h(z) < 0 for z 11
1

(0) , Z #

By defining f
2
(z) = g2(it(z)) + h(z), we shall have the desired function

f(z) — (f1(z), f2(z))

For it corresponding to a c X’ U Y’ , let J — (it — c /6,
a a a n U

ii + c 16) . For each pair J~ , J of two neighboring J intervals,
U a 1 ~~2
with J lying to the left of J , and no other J intervals lyinga2 a

in between theta, we let K — (it + £ /3, it — c /3) . If J is
a1 

ri
1 

a
1 

a
2

the left—most J~ interval , and if J~ is the right—most J~ interval , let

K — (it — £ /3, it + c /3) . If there is some J for which no
a n a a a as it r s s p

S interval lies between J and the origin , then let K — (it + c /3,0)
a a a a ap p p p
or K — (0, 11 — c /3), depending on whether S lies to the left

p p p p
or right of the origin respectively . Note that each z c WI lies out-

side K or lies in some K , n1 aa
1 

.i S

Let — . Let 4m 
= $(K~

) if in # a5 . Write K~ — (a,b).

Let — 1 — •( (2a—b , 2b— a) ) for  in — a . Choose 8n 
> 0 so that

< 2 hi

11

--4
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and choose v > 0 so that
in

<

Define

— 
~~ ~~~(x) - 

~ 
V~ ~~~~~~ 

.

The first sum is over those indices for which we have defined a S

interval. The second sum is over those indices for which we have

defined a K interval. See Figure 7.
in

The proof that g
2 

is of class Ca’ follows exactly as that

for g
1 

. One caution is that we used the fact that diam (I~ ) < 1

Here , either there are infinitely many Km on both sides of the origin,

whence diam (K ) < 1 for in sufficiently large, or there are finitely

many K
~
, in a , on one side of the origin. In this latter case, the

conditions of the lenmia are still satisfied since 4(K ) is of class

a’ 
p

C .

Claim 4: For z ~ ir 1(0), g
1
(ir(z)) = 0 implies g2

(ir(z)) < 0

Proof: Fix z , z 4 i(~ (0) . Then g1(ir (z) )  — 0 implies i t (z)  4 i~
for any a corresponding to S E X’L J Y’ -

. Either it(z) lies outside

K , or 11(z) lies in some K , in n . In either case, g2 (i t (z) )

— 
~~~~~~ * (1T (z))  < 0 . Note that SUPP(*~ ) = {x : x .

~
. Kn 

} 11/
5 S
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I
If we were to define f(z) — (g

1
(i r( z ) ) ,  g2 (w ( z ) ) ) ,  then Zn e K ’

implies f(z ) e X, Z
n 

E Y’ implies f(z ) e Y, a c W’ implies

f(z ) c W , and the prelabel requirements would be satisfied. But all

z e ir~~(O) satisfy g1
(ir(z)) — g2 

(it(z)) — 0 . In order that f have

a unique zero at a0, we modify this definition by the function h

described above.

Construction of h

With no loss of generality, the constructions in this section will

be with respect to the coordinate axes L and L’ . Thus , z + (0,0) as

n -.. a’, and no z~, n ~ 1, lies on the L’ ‘axis . Note that the origin is

the only cluster point of (z~} _ , • We will write a — (x,y) c L’ x L

Let U
3 

— (2~
(i+2) f 3 ) ,  V

3 
(—2~~, 2 (342)); (3 > 1)

For each 3, there is a > 0 such that no z lies in

U
1 

x (-_~~~~~5~~) U V
1 

x (—6~~~ 6~~)

and < . Let - 4(u
3
) + 4(V

3
) . Let - $((_6~ /2~ 6~I2))

Choose ~ > 0 so that

~u~
3) o ~~~~~~~ < 2~~ .

Define h by

h(z) — h ( ( x ,y))  — —t ~ r (x) 
~ 

(y)
• 3—1

~
1______ 

— 

13



Since each a lies in at most two rectangles of the form

U
3 ~ 

(.6~~6~ ) or V
3 

x (_6~~~ 6~~)

th. sum is well—defined. Note that for each fixed a # (0,0), there

is some open neighborhood of a which intersects at most three

rectangles of the form

• U
3 

(_6
~ .6~ ) or V

3 
x

with consecutive indices. So for some a

n+2
h(z) — — A t (x) a (y)

j n

Note that h( (O ,O)) — 0

Claim 5: h is continuous.

Proof: We need only establish continuity at (0,0)

n+2
ih(z)i — J ~ 

— A 4 r 4 (x) a 4 (y)I
jn  ~~~~~ ‘

n+2
~ A 4 1T 4 1 Ia 1 1

3 n  ‘ ‘
n+2 ,~~~

I I A 4 It~3’ I i~ ’~~i
3 n  ~

n+2
c

3 n

As a (0 ,0), a , and h(z)  + 0 . I/I

_ _ _ _ _ _ _ _ _ _  

_ _

‘

~~~~~~~~~~~~

. 

_ _  

~~~~~~~~~~

~ ,
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a’
Claim 6: h is of class C

Proof: 
ah(z) 

— — £~~~
1
~(x) o

3
(y) for a # (0,0) . This sum

goes to zero as a -. (0,0) . Applying the lemma to the definition

of the partial derivative gives ah((O,O)) 
exists and equals 0

Similarly, + 0 as a -. (0,0) . Since

ah((0.0)) 
— u r n  

h((O ,y)) — h((O ,O)) 
— 0

both first order partial derivatives are continuous. Thus, h is of

1class C

Assuming h is of class er’, we use the lemma to show that all

partial derivatives of order r + 1 exist at (0,0) and equal 0

This, combined with the fact that all partial derivatives of order r + 1
r+iapproach 0 as a + (0,0), implies that h is of class C . By

induction, h is of class C . /11

The function h was -needed to perturb the values of

for all a e ~
•
~
1(Q) a ~ a0 . So far , we have only done this for a

bound.d portion of w~~(0) . Recall that — 4(U1
) + 4(V1

)

ADefine t
1 

by

~ r1(x) for xi ~ 3/8

1 otherwise

Replace r1 by in the definition of h . Now, h(z) < 0 for

all a e it~~ (O) , a # and, rep lacing 
~ 

with a smaller value as

needed , h(z~) — 0, a > 0

15
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Degree of f at z
0

From our construction of f, we note that f does not map to

any point in the set {(x,y) e R2 : x 0, y > O} . We can, therefore ,

define arbitrarily small perturbations of f by

f
~

(z) — f(z) — (0,c), c > 0

such that has no zero. The Eaves—Saigal algorithm still computes

a path in F5
1
(O) (1 ]R2x (0,1] ; F being derived from . But this

path will be greatly different from the one we constructed , even for

small c > 0 . In particular, it cannot be converging.

The reason for this unstable behavior lies in the fact that the

degree of f at a
0 

is zero (Artin and Braun (1]). We easily compute

this degree by noting that f is symmetric with respect to the line L

Thus, the image of any circle about z
0 

does not fully wrap around the

origin. This leads us to ask: Does there exist a function f satisfying

a’
1. f is of class C

2. f has a unique zero at a0

3. F ’(O) fl x (0,1] has an infinitely retrogressing con-

verging path component , and

4. the degree of f at a
0 

is non—zero?
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